Matematik

Diskriminanten og andengradsligningen.

26. februar kl. 17:40 af Annemariehansen - Niveau: B-niveau

Hej 

Jeg har til opgave at løse diskriminanten og andengradsligningen. 

x+ 8x + 15 = 0


Brugbart svar (0)

Svar #1
26. februar kl. 19:23 af Januar2021 (Slettet)

ax2+bx+c = 0

i x2+8x+15 = 0,  er a 1, b 8 og c 15

Beregning af diskriminanten

d = b2- ( 4·a·c)

d = 82 - (4·1·15)

d = 4

Når diskriminanten er større end 0  betyder det at parablen har to skæringspunkter med x-aksen

første skæringspunkt x1 = (-b +√d) / (2·a ) = (-8 +√4) /( 2·1) = -3

andet skæringspunkt x2 = (-b -√d) / (2·a) = (-8-√4) / (2·1) = - 5

Så parablen skærer x aksen i (x,y) = (-3,0) og i (x,y) = (-5,0) 


Brugbart svar (0)

Svar #2
26. februar kl. 19:47 af ringstedLC

#1 og #0: Den sidste konklusion er ikke rigtig. Svaret bør være:

\begin{align*} x^2+8x+15 &= 0 \\ x &= \frac{-8\pm\sqrt{4}}{2} \\ x=-5 &\vee x= -3 \end{align*}

da der ikke er tale om en parabel, men om en andengradsligning, der skal løses.


Skriv et svar til: Diskriminanten og andengradsligningen.

Du skal være logget ind, for at skrive et svar til dette spørgsmål. Klik her for at logge ind.
Har du ikke en bruger på Studieportalen.dk? Klik her for at oprette en bruger.