Matematik

parameterfremstillinger

09. maj kl. 14:40 af MaryamS - Niveau: Universitet/Videregående

En der kan hjælpe med disse spørgsmål? 


Brugbart svar (0)

Svar #1
09. maj kl. 15:25 af mathon


Brugbart svar (1)

Svar #2
09. maj kl. 16:31 af mathon

     \small \begin{array}{lllllll} \blacklozenge\\& \overrightarrow{v}_1=\begin{pmatrix} -\sin(u)\\ \cos(u) \end{pmatrix}\\\\& \overrightarrow{v}_2= \begin{pmatrix} \frac{2\cdot \left ( 1+t^2 \right )-2t\cdot 2t}{\left (1+t^2 \right )^2}\\\\ \frac{-2t-(1-t^2)\cdot 2t}{\left (1+t^2 \right )^2} \end{pmatrix}=\begin{pmatrix} \frac{2(1-t)^2}{(1+t^2)^2}\\\\ \frac{-4t}{(1+t^2)^2} \end{pmatrix}\\\\\\ \blacklozenge\\& v_1=\sqrt{(-\sin(u))^2+(\cos(u))^2}=1\\\\\\& v_2=\sqrt{\left ( \frac{2(1-t)^2}{(1+t^2)^2} \right )^2+\left ( \frac{-4t}{(1+t^2)^2} \right )^2}=\frac{\sqrt{4\cdot (1-t)^4+16t^2}}{1+t^2}=\frac{2\cdot \sqrt{(1-t)^4+4t^2}}{1+t^2} \end{array}


Brugbart svar (1)

Svar #3
09. maj kl. 20:59 af mathon

\small \begin{array}{lllllll} \blacklozenge\\& \textup{s\ae ttes }&t=\tan\left ( \frac{u}{2} \right )\\& \textup{haves:}\\\\&& \frac{2t}{1+t^2}=2\cdot \tan\left ( \frac{u}{2} \right )\cdot \frac{1}{1+\tan\left ( \frac{u}{2} \right )^2}=2\cdot \frac{\sin\left ( \frac{u}{2} \right )}{\cos\left ( \frac{u}{2} \right )}\cdot \cos^2\left ( \frac{u}{2} \right )=\sin\left (u \right )\\\\&& \left ( 1-t^2 \right )\cdot \cos^2\left ( \frac{u}{2} \right )=\left ( 1-\frac{\sin^2\left ( \frac{u}{2} \right )}{\cos^2\left ( \frac{u}{2} \right )} \right )\cdot \cos^2\left ( \frac{u}{2} \right )=\cos^2\left ( \frac{u}{2} \right )-\sin^2\left ( \frac{u}{2} \right )=\cos(u)\\& \textup{dvs}\\&& \overrightarrow{s}_1(u)=\begin{pmatrix} \cos(u)\\ \sin(u) \end{pmatrix}\\\\&& \overrightarrow{s}_2(u)=\begin{pmatrix} \sin(u)\\ \cos(u) \end{pmatrix}\\\\& \end{array}


Brugbart svar (0)

Svar #4
09. maj kl. 21:02 af mathon

\small \begin{array}{llllll} \blacklozenge\\& \textup{s\aa \ }\\&& \overrightarrow{s}_1\left ( \frac{\pi}{4} \right )=\begin{pmatrix} \cos\left ( \frac{\pi}{4} \right )\\ \sin\left ( \frac{\pi}{4} \right ) \end{pmatrix}=\begin{pmatrix} \frac{\sqrt{2}}{2}\\ \frac{\sqrt{2}}{2} \end{pmatrix}=\begin{pmatrix} \sin\left ( \frac{\pi}{4} \right )\\ \cos\left ( \frac{\pi}{4} \right ) \end{pmatrix}=\overrightarrow{s}_2\left ( \frac{\pi}{4} \right ) \end{array}


Brugbart svar (1)

Svar #5
10. maj kl. 11:56 af mathon

\small \begin{array}{llllll} \blacklozenge\\& \textup{Kurven er }\\&\textup{enhedscirklen:}\\&&x^2+y^2=1\\\\& \textup{hvis tangent-}\\& \textup{ligning i }(x_o,y_o)\\& \textup{er:}\\&& x_o x+y_oy=1\\\\& \textup{tangent i}\\& \left ( \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right )\textup{:}\\&& \frac{1}{\sqrt{2}}x+\frac{1}{\sqrt{2}}y=1\\\\&& x+y=\sqrt{2}\\\\&\textup{Normalen i}\\& \left ( \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right )\textup{:}\\&& y=x+b\\\\&& \frac{1}{\sqrt{2}}=\frac{1}{\sqrt{2}}+b\\\\&& b=0\\& \textup{dvs}\\&& y=x\quad \textup{som g\aa r gennem }(0,0) \end{array}


Brugbart svar (1)

Svar #6
10. maj kl. 12:13 af mathon

\small \begin{array}{llllll} \blacklozenge\\& \textup{Krumningscirklen }\\& \textup{i }\left ( \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right )\textup{:}\\&& \left (x-\frac{\sqrt{2}}{2} \right )^2+\left (y-\frac{\sqrt{2}}{2} \right )^2=1 \end{array}


Svar #7
11. maj kl. 14:24 af MaryamS

Tusind tak for svar! 


Skriv et svar til: parameterfremstillinger

Du skal være logget ind, for at skrive et svar til dette spørgsmål. Klik her for at logge ind.
Har du ikke en bruger på Studieportalen.dk? Klik her for at oprette en bruger.