Matematik

f mærke

10. december 2021 af emmamuzze - Niveau: B-niveau

f(x) = 2x^3 - 6x ^2 + 4 

Find f´(x) ved at differentierer f(x) = 2x^3 − 6x^2 + 4

kan i hjælpe mig med at finde f´(x) f mærke 

har prøvet lidt selv 

f´(x) = 6x^2 - 12x

     0 = f´(x) 

        = 6x^2 - 12x

        = 2x * (2 - x) 

så f´(x) ender med at være 

X = 0 eller X = 2


Brugbart svar (0)

Svar #1
10. december 2021 af mathon

       KORREKT!


Brugbart svar (0)

Svar #2
10. december 2021 af Mathias73

6x^2-12=0

Kan faktoriseres til:

x\cdot (6x-12)=0

I følge nulreglen skal den første faktor (x) være 0 ellers skal den anden faktor (6x-12) være 0.

Så der fås:

x=0

6x-12=0


Svar #3
10. december 2021 af emmamuzze

mange taak


Svar #4
10. december 2021 af emmamuzze

Løs ligningen f´(x) = 0 

hvordan løser jeg så denne her


Brugbart svar (0)

Svar #5
10. december 2021 af mathon

#0
           Den har du jo løst!

      0 = f´(x) 

      0  = 6x^2 - 12x

      0  = 2x * (2 - x) 

x ender med at være 

X = 0 eller X = 2


Brugbart svar (0)

Svar #6
10. december 2021 af Mathias73

#2

6x^2-12=0

Kan faktoriseres til:

x\cdot (6x-12)=0

I følge nulreglen skal den første faktor (x) være 0 ellers skal den anden faktor (6x-12) være 0.

Så der fås:

x=0

6x-12=0

Rettelse:

f'(x)=6x^2-12x

f'(x)=0

6x^2-12x=0

Kan omskrives til:

x\cdot (6x-12)=0

I følge nulreglen skal den første faktor (x) være 0 ellers skal den anden faktor (6x-12) være 0.

x=0

6x-12=0


Brugbart svar (0)

Svar #7
10. december 2021 af mathon

#6

#0's faktorisering er mere bekvem - men ikke mere rigtig

             \small \small 6x^2-12x=6\cdot x\cdot x-6\cdot x\cdot 2=6x(x-2)=0

             her kan det direkte aflæses
             at
                       \small x=\left\{\begin{matrix} 0\\2 \end{matrix}\right.


Brugbart svar (0)

Svar #8
10. december 2021 af Eksperimentalfysikeren

      = 6x^2 - 12x

        = 2x * (2 - x) 

Den sidste omskrivning er forkert. Det skulle have v;ret 6x*(x-2).

Det giver de samme nulpnkter.


Skriv et svar til: f mærke

Du skal være logget ind, for at skrive et svar til dette spørgsmål. Klik her for at logge ind.
Har du ikke en bruger på Studieportalen.dk? Klik her for at oprette en bruger.