Matematik
Differentialkvotient
Bestem differentialkvotienten af funktionen:
f ( x) = cos ( x ) - cos3 (x )
-----------------------------------
Mit forsøg
f ( x) = cos ( x ) - cos 3 ( x )
f ´ ( x ) = (cos ( x ) - cos 3 ( x ) ) ´ I formelsamlingen
funktion afledet funktion
f ( x ) f ´( x )
cos ( x ) - sin ( x )
f ´ ( x ) = (cos ( x ) - cos 3 ( x ) ) ´
= - sin ( x ) - (- 3 • sin2 ( x )
= - sin ( x ) + 3 • sin2 ( x )
Mit spørgsmål er det en rigtig bestemmelse af funktionens differentialkvotient ?
På forhånd tak
Svar #1
13. maj kl. 11:58 af Christianfslag
Du har ikke fundet nogen differentialkvotient men i stedet differentialkoefficienten.
Vi kan differentiere de to led separat, hvor vi i første omgang har at
Hvilket bliver til
Hvorefter vi får
Og sidst
Svar #3
13. maj kl. 13:03 af Christianfslag
#2Tak for svaret
Det var så lidt. Skriv gerne hvis der er et led du ikke 'forstår'.
Svar #4
13. maj kl. 13:23 af AskTheAfghan
Du gør det meget godt. Dér, hvor du skriver:
f ´ ( x ) = (cos ( x ) - cos 3 ( x ) ) ´= - sin ( x ) - (- 3 • sin2 ( x )
er ikke helt korrekt, fordi [cos3(x)]' = -3sin(x)cos2(x).
For at se dette, sæt først g(x) = x3 og h(x) = cos(x), så man kan skrive g(h(x)) = cos3(x). Ved hjælp af kædereglen (markeret med grønt), får du
[cos3(x)]' = [g(h(x))]'= h'(x)·g'(h(x)) = -sin(x)·3(h(x))2 = -3sin(x)cos2(x).
Svar #5
13. maj kl. 14:34 af ca10
Tak for svaret
Af det sidste svar kan jeg se at det er en sammensat funktion der skal differentieres på følgende måde, hvor man skal anvende kædereglen således :
1. Bestemme differentialkvotienten af den ydre funktion g taget i h ( x ) : g ´( h ( x ) )
2. Bestemme differentialkvotienten af af den indre funktion h taget i x : h´ (x )
3. Danne produktet af de to differentialkvotienter :
g´ ( h (x ) ) • h´ ( x )
Fordi f ( x) = cos ( x ) - cos3 (x ) og hvor cos3 er en sammensat af funktion
g(x) = x3 og h(x) = cos(x)
h g
x → cos ( x ) → cos 3 ( x )
pilen betyder at x går over i cos ( x ) og cos ( x ) går over i cos 3 ( x )
1. Differentialkvotienten af den ydre funktion taget i værdien af den indre funktion
f ´( g ( x ) 3 ) = [ ( cos )3 ]´ = 3 • cos 2 ( x )
2. Differentialkvotienten af den indre funktion taget i x hvor h ( x ) = cos ( x )
h ´ ( x ) = [cos ( x ) ] ´ = - sin ( x )
3. Produktet af de to differentialkvotienter er
[ g ( h ( x ) ) ]´ = g´( (h (x )) • h´ ( x ) = 3 • cos 2 ( x ) • (- sin ( x ) ) = - 3 • cos 2 ( x ) • sin ( x )
Svar #6
13. maj kl. 16:15 af ringstedLC
#5: Det ser rigtigt ud. Du behøver ikke at vise alle mellemregningerne.
Den omtalte kæderegel, der kan bruges ved diff. af sammensatte funktioner står af uvisse grunde ikke i FS stx B:
Sørg derfor for at have den i dine noter til skriftlig med hj.-midler.
Svar #7
13. maj kl. 16:15 af ringstedLC
#1Du har ikke fundet nogen differentialkvotient men i stedet differentialkoefficienten.
Dét man finder ved at differentiere en funktion, er en (differential-) kvotient:
Svar #9
13. maj kl. 17:17 af AskTheAfghan
#5 Du kom vist til at taste forkert i dit argument ved punkt 1 nederst. Du mente vist
g'(h(x)) = 3(h(x))2 = 3cos2(x).
Men, det ser ellers ud til, at du har godt styr på, hvad du gør!
PS: Hvis det er en aflevering, du laver - behøver du ikke at forklare alting i detaljer, men bare henvise hvilken formel du bruger, som #6 gør. Dine uddybende forklaringer kan du gemme i din notebog :)
Skriv et svar til: Differentialkvotient
Du skal være logget ind, for at skrive et svar til dette spørgsmål. Klik her for at logge ind.
Har du ikke en bruger på Studieportalen.dk?
Klik her for at oprette en bruger.