Matematik

Bestemmele af længder??!

02. december 2013 af fufu10 - Niveau: C-niveau

Heeej, håber virkelig nogen kan hjælpe med denne opgave! 

Der er tale om opgave b. Jeg kan slet ikke finde nogen måder at beregne længderne af stængerne på, eftersom jeg kun har fået oplyst længden AC? :/

 

Vedhæftet fil: matematik hjælp.png

Brugbart svar (0)

Svar #1
02. december 2013 af Andersen11 (Slettet)

Man kender højden hb = 10,00m i trekant ABC og vinklen v, så

|BC| = hb / sin(v)

Dernæst kan |AB| findes ved at benytte en cosinusrelation i trekant ABC.


Brugbart svar (0)

Svar #2
02. december 2013 af lfdahl

Fra toppunktet B nedfældes den lodrette højde på grundlinien AC, som derved deles i to stykker: x1 og x2

|AB|2 = x22 + 102 og x2 er bestemt af relationerne: tan(v) = 10/x1, hvor x1 + x2 = 20

|BC| = x12 + 102


Svar #3
02. december 2013 af fufu10

Undskyld jeg spørger dumt, men vinklen v er jo ikke i trekanten ABC? 


Brugbart svar (0)

Svar #4
02. december 2013 af Andersen11 (Slettet)

#3

Vinkel C i trekant ABC er ensliggende med vinkel v, da de to vandrette linier er parallelle. Derfor er vinkel C lig med vinkel v. Vinkel C er også på tegningen markeret med samme buemærke som vinkel v.


Brugbart svar (0)

Svar #5
02. december 2013 af lfdahl

#3

Af figuren fremgår det, at vinkel v er den samme i gitteret


Svar #6
02. december 2013 af fufu10

Okee det giver mere mening nuu, TAK.. 
Jeg vælger at bruge svar #1


Men jeg har nu fundet Siden BC, som giver 21,48.. 

Da jeg skal til at bruge cosinusrelationen til at længden AB, går det helt galt..

c2=21,482 + 202 - 2 * 21,48 * 20 * cos(31,9) 

Jeg kan ikke få det til at give resultatet, da jeg får tallet til 131,95, der ikke rigtig giver mening :/
Har sat paranteserne ind korrekt osv. det virker bare ikke.. :/?


Brugbart svar (0)

Svar #7
02. december 2013 af Andersen11 (Slettet)

#6

Du har ikke fundet |BC| korrekt. Benytter man fremgangsmåden i #1, har man

|BC| = 10 / sin(v) = 18,9286

Bemærk, at cosinusrelationen giver c2 = |AB|2 . Man skal så tage kvadratroden af dette resultat.


Svar #8
02. december 2013 af fufu10

Tusind millioner tak for hjælpen! :)))))


Skriv et svar til: Bestemmele af længder??!

Du skal være logget ind, for at skrive et svar til dette spørgsmål. Klik her for at logge ind.
Har du ikke en bruger på Studieportalen.dk? Klik her for at oprette en bruger.