Matematik

22/7

22. juni kl. 00:24 af emma8899 - Niveau: A-niveau

Hvorfor giver pi tæt på 22/7 og ikke en anden brøk og hvordan bevises det?


Brugbart svar (0)

Svar #1
22. juni kl. 01:14 af ringstedLC


Brugbart svar (0)

Svar #2
22. juni kl. 14:22 af SuneChr

Et rationalt tal p/q kan ligge så tæt på π , som man ønsker, men p/q kan aldrig blive lig med π .
π er ikke et rationalt tal.
Hvis man ønsker π med to rigtige decimaler, skal man finde hele positive tal p og q således, at
   |π - p/q| < 0,005
Man kan ønske, hvad man vil, og med n rigtige decimaler må man finde p og q således, at
   |π - p/q| < 1/2·10- n  


Brugbart svar (0)

Svar #3
22. juni kl. 14:47 af SuneChr

Mange, især af den ældre generation, fik i regnetimerne i deres skoletid at vide, at π = 22/7 .
Det var af praktiske grunde, når man skulle udregne areal, rumfang og omkreds, hvori indgik cirkler.
Regnestykkerne blev udformet således, at det blev let at forkorte med 7. Det var ikke resultatet,
der var det vigtigste, men det at kunne anvende en formel.
 


Brugbart svar (0)

Svar #4
22. juni kl. 23:12 af SuneChr

Lad os lave en ønskeliste for udsagnet  |π - p/q| < 1/2·10- n

π med n rigtige decimaler:
  n                  p              q  
  2                  22             7
  4                333         106
  6                355          113
  9          103993      33102
10          312689      99532
11          833719    265381
Her vil vi så stoppe ved sekscifret tæller og nævner.
  


Skriv et svar til: 22/7

Du skal være logget ind, for at skrive et svar til dette spørgsmål. Klik her for at logge ind.
Har du ikke en bruger på Studieportalen.dk? Klik her for at oprette en bruger.