Matematik

Differentiering af brøk

01. april kl. 12:00 af petbau - Niveau: B-niveau

Jeg sidder med funktionen: h(x) = (x2 +2x) / x

Hvis x sættes uden for parentes : h(x) = x(x+2) / x

x kan forkortes i tæller og nævneren, h(x) = (x+2)

h ' (x ) = 1

Jeg ønsker imidlertid at lære at regne den ud, for at lære håndværket, da det jo ikke er altid, at jeg kan forkorte noget væk i tæller og nævner.  

Jeg vil prøve at regne den ud fra: (f/g) '(x) =g(x)* f '(x) - f(x) * g '(x) / (g (x))2

Jeg ved at: 1/x = x-1 og 1/x2 = x-2

1/x differentieret er -x-2

Jeg har vedhæftet mine udregning i worddokumentet, for at kunne skrive det op på en brøkstreg.

På forhånd tak for hjælpnen


Brugbart svar (0)

Svar #1
01. april kl. 12:04 af janhaa

h(x) = x + 2

h ' (x) = 1

eller

 h ' (x) = ((2x+2)*x - (x2+2x)) / x = 2 + (2/x) - 1 - (2/x) = 1

disse er like, OK.


Brugbart svar (0)

Svar #2
01. april kl. 12:11 af mathon

              \begin{array}{llllll}&\left (\frac{x^2+2x}{x} \right )'=\frac{(2x+2)\cdot x-(x^2+2x)\cdot 1}{x^2}=\frac{2x^2+2x-x^2-2x}{x^2}=\frac{x^2}{x^2}=1 \end{array}


Svar #3
01. april kl. 12:19 af petbau

Hej mathon

Her på portalen kan jeg ikke læse dine svar. Der står kode, begin{array osv.

Jeg ved ikke, hvad der er galt ???


Svar #4
01. april kl. 12:38 af petbau

kan du sende det som vedhæftet fil?

På forhånd tak


Svar #5
01. april kl. 12:38 af petbau

Tak mathon, nu kan jeg se det :-)


Svar #6
01. april kl. 12:45 af petbau

Jeg sidder lige og tygger lidt på den, men mange tak for hjælpen mathon og janhaa


Svar #7
01. april kl. 12:58 af petbau

Jeg er ikke i tvivl om, at I har ret. Ikke destomindre forstår jeg ikke, hvorfor det giver x efter (2x+2) ???

Hvis jeg bruger (f/g) '(x) =g(x)* f '(x) - f(x) * g '(x) / (g (x))2 , hvor g udifferentieret er 1/x = x-1

Jeg vil have, at det skal være (2x+2)* x-1 ....osv


Brugbart svar (0)

Svar #8
01. april kl. 13:24 af mathon

                            \small \begin {array}{lllllll}\\\\& g(x)=x\qquad \textup{og}\qquad f(x)=x^2+2x\\\\ & g{\,}'(x) =(x){\,}'=x \qquad \textup{og} \qquad f{\,}'(x)=2x+2\\\\& \frac{f{\,}'(x)\cdot g(x)-f(x)\cdot g{\,}'(x)}{g(x))^2}=\frac{(2x+2)\cdot x-(x^2+2x)\cdot \mathbf{{\color{Red} 1}}}{x^2} \end{array}


Brugbart svar (0)

Svar #9
01. april kl. 13:34 af Germanofil

#7

Det benyttes, at h(x) = f(x) / (g(x)) ⇒ h'(x) = f'(x) · g - f(x) · g'(x) / (g(x))2
Vi har funktionen h,
 h(x) = (x2 +2x) / x,

og h er en kvotient, dvs. brøk, af funktionerne:
f(x) = x2+2x      ,     g(x) = x.

Differentiér nu hver af funktionerne enkeltvis.
 


Svar #10
01. april kl. 13:45 af petbau

Hej mathon.

Jeg har misforstået g(x) som værende 1/x. Det er som du skriver, g(x) = x og g ' (x) = 1

Min misforståelse har rod i, at jeg troede, at jeg kunne betragte h(x) som ( x2 + 2 ) * 1/x, og derved kunne jeg bruge (f *g) ' (x) = f '( x) * g(x) + f( x)* g ' (x) . Det kan jeg ikke !!

Jeg må øve mig.

Det er ikke første gang du hjælper mig. Tusinde tak for din hjælp og tålmodighed ikke mindst. 

Venlig hilsen

Peter


Svar #11
01. april kl. 13:47 af petbau

Tak germano, det er virkelig super med al den hjælp.

Jeg fejllæste/ forstod ikke g(x) som g(x) = x, som du så rigtigt skriver.

Vh

Peter


Skriv et svar til: Differentiering af brøk

Du skal være logget ind, for at skrive et svar til dette spørgsmål. Klik her for at logge ind.
Har du ikke en bruger på Studieportalen.dk? Klik her for at oprette en bruger.