Matematik

Løs differentialligningen og ekstrema

31. marts kl. 22:07 af MustafaKemal - Niveau: A-niveau

Hej venner

Jeg sidder fast ved 2 forskellige opgaver. Jeg har lavet noget af opgaverne, men derefter ved jeg ikke hvordan skal komme videre. 

Håber i vil hjælpe mig med at komme videre. :) 

Øvelse 2.4.1

Løs differentialligningen

y ' + y/x = 1 

for x > 0 

a (x) = 1/x

b (x) = 1

A (x) = ln(ιxι)

f(x) = e-ln(ιxι) ∫ 1eln(ιxι) dx + ce-ln(ιxι)

Men jeg ved ikke rigtig hvordan jeg skal komme videre her fra

Øvelse 3.6.1 

Givet funktionen

f(x,y)=-x3+2x2-y

Bestem de stationære punkter for f.

Vi bestemmer først de partielle afledede til:

fx'(x,y)=-3x2+4x
fy'(x,y)=-2y

Vi sætter nu de partielle afledede lig og får

-3x2+4x=0 <-> x = 0 v x = 4/3

-2y=0 <-> y=0

Altså er (0,0) og (4/3,0) funktionens stationære punkter.

Angiv for hvert af de stationære punkter, om dette svarer til et lokalt minimum, lokalt maksimum eller et saddelpunkt.

Denne del af opgaven ved jeg ikke helt hvordan jeg skal løse. 

Jeg takker pænt på forhånd!


Svar #1
31. marts kl. 22:56 af MustafaKemal

Nogle der vil hjælpe?   :)  


Brugbart svar (0)

Svar #2
31. marts kl. 23:09 af AMelev

Husk kun en opgave pr. tråd, ellers bliver det let noget roderi.

Øvelse 2.4.1 
e-ln(ιxι)  = (eln(ιxι) )-1 = x-1 = 1/x 
∫ 1e
ln(ιxι) dx = ∫ x dx = .... 
ce
-ln(ιxι) = c/x
Så f(x) = e-ln(ιxι) ∫ 1eln(ιxι) dx + ce-ln(ιxι) = \frac{1}{x}\cdot \int xdx+c\cdot \frac{1}{x}=\frac{1}{x}\cdot \frac{1}{2}x^2+c\cdot \frac{1}{x} =\frac{1}{2}x+\frac{c}{x}

Øvelse 3.6.1 
Se FS 34 (198) & (199) & figur med info oven for (198)


Svar #3
31. marts kl. 23:18 af MustafaKemal

Forstår ikke helt hvad du mener med øvelse 3.6.1


Brugbart svar (0)

Svar #4
31. marts kl. 23:22 af AMelev

#1 Det er temmelig dumt at rykke for svar efter1 time. Det bliver registret som svar, og så springer folk måske over det det og koncentrerer sig om spørgsmål, der ikke er svaret på. 
Desuden virker det smaskforkælet, at du forventer svar inden for en time. Vi er alle frivillige og har et liv ved siden af studienet, 
Du skal ikke forvente en reponstid på mindre end en dag. Hvis det haster mere, er det fordi du er for sent ude.


Brugbart svar (0)

Svar #5
31. marts kl. 23:24 af Soeffi

#0...Øvelse 3.6.1... 

 


Brugbart svar (0)

Svar #6
31. marts kl. 23:34 af ringstedLC

#0

Angiv for hvert af de stationære punkter, om dette svarer til et lokalt minimum, lokalt maksimum eller et saddelpunkt.

Denne del af opgaven ved jeg ikke helt hvordan jeg skal løse. 

Jeg takker pænt på forhånd!

Gør ligesom ved en funktion med én variabel; altså x-værdier i intervallerne før, mellem og efter de stationære punkter.


Brugbart svar (0)

Svar #7
31. marts kl. 23:58 af AMelev

#3 Henvisninger til formelsamling.


Skriv et svar til: Løs differentialligningen og ekstrema

Du skal være logget ind, for at skrive et svar til dette spørgsmål. Klik her for at logge ind.
Har du ikke en bruger på Studieportalen.dk? Klik her for at oprette en bruger.