Matematik

Linjens ligning

04. august kl. 11:54 af MimiJac - Niveau: B-niveau

Hvordan løser jeg linjens ligning?

Hvis den fx hedder -6x+2y-4=0


Brugbart svar (0)

Svar #1
04. august kl. 11:55 af mathon

Løser mht y?


Svar #2
04. august kl. 11:56 af MimiJac

Men hvordan løser jeg denne ligning?

Sådan step for step.


Brugbart svar (0)

Svar #3
04. august kl. 12:06 af mathon

                       \small \small \begin{array}{cccl} -6x+2y-4&=&0&\textup{divider med }2\\\\ -3x+y-2&=&0&\textup{add}\mathrm{\acute{e}}\textup{r }2 \\\\ -3x+y&=&2&\textup{add}\mathrm{\acute{e}}\textup{r }3x\\\\ y&=&3x+2 \end{array}


Svar #4
04. august kl. 12:42 af MimiJac

Hvorfor startes der ud ved ar dividere med 2?


Brugbart svar (0)

Svar #5
04. august kl. 12:49 af mathon

Du kan selvfølgelig vente med at dividere med 2 til sidst, hvis du foretrækker det.


Svar #6
04. august kl. 12:56 af MimiJac

Okay.

Er dette så rigtigt?

3x-2y+5=0

1,5x-y+2,5=0

1,5x-y=-2,5

y=1,5x-2,5


Brugbart svar (0)

Svar #7
04. august kl. 13:05 af mathon

    Nej.

                    \small \begin{array}{lllll} \end{array}\small \small \begin{array}{lllll} 2y=3x+5\\\\ y=\frac{3}{2}x{\color{Red} +}\frac{5}{2} \end{array}


Svar #8
04. august kl. 13:06 af MimiJac

Er dette rigtigt?

hvis en linje går gennem punkterne (-3,-2) og (-2,-3)

Vil linjens ligning være  1x-1y+c=0


Svar #9
04. august kl. 13:07 af MimiJac

Hvad gør jeg forkert?


Brugbart svar (0)

Svar #10
04. august kl. 13:10 af mathon

#8
          Vil linjens ligning være   
                                                  \small y=-x-5


Svar #11
04. august kl. 13:22 af MimiJac

Okay. bliver der divideret med 2 fordi der er 2y?

Er denne korrekt?

3x-2y+5=0

y= \frac{3}{2}x-\frac{5}{2}


Brugbart svar (0)

Svar #12
04. august kl. 13:30 af Mathias7878

#11 nej den er ikke korrekt. Du laver en fortegnsfejl:

3x - 2y + 5 = 0 \Leftrightarrow 3x + 5 = 2y \Leftrightarrow y = \frac{3}{2}x+\frac{5}{2}

- - -

 

 


Svar #13
04. august kl. 13:37 af MimiJac

Okay.

Er denne korrekt?

x+2y=0

y=\frac{1}{2}x


Svar #14
04. august kl. 13:42 af MimiJac

Hvad med denne?

2x+4y-4=0

2x-4=4y

y=\frac{2}{4}x+\frac{-4}{4}

y=2x-1


Brugbart svar (1)

Svar #15
04. august kl. 13:54 af Mathias7878

#13 du laver desværre fortegnsfejl igen.

x+2y = 0 \Leftrightarrow x=-2y \Leftrightarrow y = -\frac{1}{2}x

Det samme gør du i #14. Husk, når du trækker +4y over på den anden side, ændrer fortegnet sig. Altså

2x+4y-4 = 0 \Leftrightarrow 2x+4y-4 -4y = -4y \Leftrightarrow 2x-4 = -4y

- - -

 

 


Brugbart svar (0)

Svar #16
10. august kl. 09:37 af mathon

og løst mht x

                    \small \begin{array}{cccl} -6x+2y-4&=&0&\textup{divider med }-6\\\\ x-\frac{1}{3}y+\frac{2}{3}&=&0&\textup{subtraher }\frac{2}{3} \\\\ x-\frac{1}{3}y&=&-\frac{2}{3}&\textup{add}\mathrm{\acute{e}}\textup{r }\frac{1}{3}y\\\\ x&=&\frac{1}{3}y-\frac{2}{3} \end{array}


Skriv et svar til: Linjens ligning

Du skal være logget ind, for at skrive et svar til dette spørgsmål. Klik her for at logge ind.
Har du ikke en bruger på Studieportalen.dk? Klik her for at oprette en bruger.