Matematik

Sandsynlighed

02. februar kl. 20:36 af MathiasFraDK - Niveau: 9. klasse
Skal jeg bruge n^r da de kan vælge de samme varer?

Brugbart svar (1)

Svar #1
02. februar kl. 21:26 af peter lind


Brugbart svar (1)

Svar #2
02. februar kl. 21:30 af peter lind

slet ikke. Der er købt for 90 kr ialt. Du skal se hvilken kombinationer af køb, der giver 90 kr


Svar #3
02. februar kl. 21:50 af MathiasFraDK

Hvordan vil du sige man lettest kommer gennem opgaven, så? Det tager utrolig lang tid.


Svar #4
02. februar kl. 22:02 af MathiasFraDK

Blev færdig med opgaven.


Brugbart svar (1)

Svar #5
02. februar kl. 22:24 af peter lind

Til hjælp. start med et eller andet.tal for et af forslagene for eks  kakao og et eller andet antal af det som går op  i 90..vælg antallet af det systematis. regn ud hvad det koster. Derefter ser du om en af de andre går op i det det resterende og vælger videre


Svar #6
02. februar kl. 22:41 af MathiasFraDK

Har regnet det til at være 12 i alt. Er det rigtigt hvis du overhovedet har lavet den?


Brugbart svar (0)

Svar #7
24. marts kl. 16:50 af Milla1736

hvilke 12?


Brugbart svar (1)

Svar #8
24. marts kl. 16:51 af Milla1736

Kan kun finde 11


Svar #9
24. marts kl. 19:52 af MathiasFraDK

Ja der var 11. Det lang tid siden jeg lavede den så kan ikke rette nu.


Brugbart svar (0)

Svar #10
03. april kl. 02:21 af Majaaaaaaaaaa

Hej nu sidder jeg selv med den samme opgave, hvad var det endelige svar?

jeg forstår nemlig ikke det øverste


Svar #11
03. april kl. 21:05 af MathiasFraDK

#10

Maja,

De køber for:         =90 kr.

Saftevand koster:  =6 kr.

Chokolade koster: =8 kr.

Kakao koster:        =15 kr.

Børnene i gruppen behøver ikke at købe alle 3 valgmuligheder som er vist på billedet ovenover i #1. De kan også nøjes med at købe 2-1 af valgmulighederne. Det skal bare ende med at give =90 det børnene har købt for tilsammen. 

Du kan nu opstille følgende ligning:

6x+8y+15z=90

x=Antallet af saftevand der købes

y=Antallet af chokoladebare der købes

z=Antallet af kakaoer der købes


Brugbart svar (2)

Svar #12
03. april kl. 21:36 af Soeffi

#11.

Du kan regne ud, at z må være et lige tal, dvs.: 0, 2, 4 eller 6. Dette indses på følgende måde: 6x og 8 y er altid lige tal, og deres sum dermed også et lige tal. 15z er ulige for z ulige og lige for z lige. 90 er et lige tal. Da lige plus ulige giver ulige og lige plus lige giver lige, så må z være lige. Den laveste værdi for z er 0 og den højeste er 6, da 15·6 = 90.

Man undersøger nu 6x+8y+15z=90 for de fire værdier af z:

z = 0: 

6x + 8y + 15·0 = 90 ⇒ x = 15 - (4/3)·y.

Det ses at kun værdier af y som 3 går op i kan bruges.

Man vælger y = 0, 3, 6...indtil x bliver negativ:

y = 0: x = 15 - (4/3)·0 = 15

y = 3: x = 15 - (4/3)·3 = 11

y = 6: x = 15 - (4/3)·6 = 7

y = 9: x = 15 - (4/3)·9 = 3

y = 12: x = 15 - (4/3)·12 = -1

z = 2:

6x + 8y + 15·2 = 90 ⇒ x = 10 - (4/3)·y. 

Man vælger y = 0, 3, 6...indtil x bliver negativ:

y = 0: x = 10 - (4/3)·0 = 10

y = 3: x = 10 - (4/3)·3 = 6

y = 6: x = 10 - (4/3)·6 = 2

y = 9: x = 10 - (4/3)·9 = -2

z = 4:

6x + 8y + 15·4 = 90 ⇒ x = 5 - (4/3)·y. 

Man vælger y = 0, 3, 6...indtil x bliver negativ:

y = 0: x = 5 - (4/3)·0 = 5

y = 3: x = 5 - (4/3)·3 = 1

y = 6: x = 5 - (4/3)·6 = -3

z = 6:

6x + 8y + 15·6 = 90 ⇒ x = 0 - (4/3)·y. 

Man vælger y = 0, 3, 6...indtil x bliver negativ:

y = 0: x = 0 - (4/3)·0 = 0

y = 3: x = 0 - (4/3)·3 = -4

...

Dette giver 10 muligheder:

    z = 0,...

1) y = 0, x = 15

2) y = 3, x = 11

3 ) y = 6, x = 7

4) y = 9, x = 3

    z = 2,...

5) y = 0, x = 10

6) y = 3, x = 6

7) y = 6, x = 2

    z = 4,...

8) y = 0, x = 5

9) y = 3, x = 1

    z = 6,...

10) y = 0, x = 0.


Svar #13
03. april kl. 22:24 af MathiasFraDK

#12

#11.

Du kan regne ud, at z må være et lige tal, dvs.: 0, 2, 4 eller 6. Dette indses på følgende måde: 6x og 8 y er altid lige tal, og deres sum dermed også et lige tal. 15z er ulige for z ulige og lige for z lige. 90 er et lige tal. Da lige plus ulige giver ulige og lige plus lige giver lige, så må z være lige. Den laveste værdi for z er 0 og den højeste er 6, da 15·6 = 90.

Man undersøger nu 6x+8y+15z=90 for de fire værdier af z:

z = 0: 

6x + 8y + 15·0 = 90 ⇒ x = 15 - (4/3)·y.

Det ses at kun værdier af y som 3 går op i kan bruges.

Man vælger y = 0, 3, 6...indtil x bliver negativ:

y = 0: x = 15 - (4/3)·0 = 15

y = 3: x = 15 - (4/3)·3 = 11

y = 6: x = 15 - (4/3)·6 = 7

y = 9: x = 15 - (4/3)·9 = 3

y = 12: x = 15 - (4/3)·12 = -1

z = 2:

6x + 8y + 15·2 = 90 ⇒ x = 10 - (4/3)·y. 

Man vælger y = 0, 3, 6...indtil x bliver negativ:

y = 0: x = 10 - (4/3)·0 = 10

y = 3: x = 10 - (4/3)·3 = 6

y = 6: x = 10 - (4/3)·6 = 2

y = 9: x = 10 - (4/3)·9 = -2

z = 4:

6x + 8y + 15·4 = 90 ⇒ x = 5 - (4/3)·y. 

Man vælger y = 0, 3, 6...indtil x bliver negativ:

y = 0: x = 5 - (4/3)·0 = 5

y = 3: x = 5 - (4/3)·3 = 1

y = 6: x = 5 - (4/3)·6 = -3

z = 6:

6x + 8y + 15·6 = 90 ⇒ x = 0 - (4/3)·y. 

Man vælger y = 0, 3, 6...indtil x bliver negativ:

y = 0: x = 0 - (4/3)·0 = 0

y = 3: x = 0 - (4/3)·3 = -4

...

Dette giver 10 muligheder:

    z = 0,...

1) y = 0, x = 15

2) y = 3, x = 11

3 ) y = 6, x = 7

4) y = 9, x = 3

    z = 2,...

5) y = 0, x = 10

6) y = 3, x = 6

7) y = 6, x = 2

    z = 4,...

8) y = 0, x = 5

9) y = 3, x = 1

    z = 6,...

10) y = 0, x = 0.

Når på den måde. Mange tak, for nu har jeg endelig forstået din metode. 


Brugbart svar (1)

Svar #14
04. april kl. 08:57 af Soeffi

#13. De 10 muligheder:

1) x = 15, y = 0 og z = 0 : 15 glas saftevand

2) x = 11, y = 3 og z = 0 : 11 glas saftevand og 3 chokoladebarer

3 ) x = 7, y = 6 og z = 0  : 7 glas saftevand og 6 chokoladebarer

4) x = 3, y = 9 og z = 0   : 3 glas saftevand og 9 chokoladebarer

5) x = 10, y = 0 og z = 2  : 10 glas saftevand og 2 kopper kakao

6) x = 6, y = 3 og z = 2   : 6 glas saftevand, 3 chokoladebarer og 2 kopper kakao

7) x = 2, y = 6 og z = 2   : 2 glas saftevand, 6 chokoladebarer og 2 kopper kakao

8) x = 5, y = 0 og z = 4   : 5 glas saftevand og 4 kopper kakao

9) x = 1, y = 3 og z = 4   : 1 glas saftevand, 3 chokoladebarer og 4 kopper kakao

10) x = 0, y = 0 og z = 6 : 6 kopper kakao


Brugbart svar (0)

Svar #15
04. april kl. 11:21 af Soeffi

#13. Når på den måde. Mange tak, for nu har jeg endelig forstået din metode. 

Jeg er glad for, at du forstår det.


Skriv et svar til: Sandsynlighed

Du skal være logget ind, for at skrive et svar til dette spørgsmål. Klik her for at logge ind.
Har du ikke en bruger på Studieportalen.dk? Klik her for at oprette en bruger.