Matematik

Binom ligning z^6=-729

20. september kl. 16:07 af STX100 - Niveau: Universitet/Videregående

Hej, hvordan løses den binome ligning z^6=-729? 

Hvilken metode skal benyttes?


Brugbart svar (0)

Svar #1
20. september kl. 16:41 af peter lind

πskriv -729 som 729eiπ+2pπi de mulige  løsninger bliver 729e(iπ+2pπi)/6


Brugbart svar (0)

Svar #2
20. september kl. 17:08 af mathon

\small \begin{array}{lllllll}&& z^6=&-729 =729\cdot e^{\textit{\textbf{i}}\cdot \left (\pi+p\cdot 2\pi \right )}\qquad p\in\left \{ 0,1,2,3,4,5 \right \}\\\\&&z=& 729^{\frac{1}{6}}\cdot e^{\textit{\textbf{i}}\cdot \left (\pi+p\cdot 2\pi \right )^{\frac{1}{6}}}\\\\&& z=&3\cdot e^{{\textit{\textbf{i}}\cdot \left (\frac{\pi}{6}+p\cdot \frac{\pi}{3} \right )}}\qquad p\in\left \{ 0,1,2,3,4,5 \right \}\\\\\\&& \end{array}


Brugbart svar (0)

Svar #3
20. september kl. 17:13 af mathon

\small \begin{array}{llllll} \textup{hvoraf:}\\& z=&\left\{\begin{array}{lll} 3\cdot e^{\textit{\textbf{i}}\cdot\left ( \frac{\pi}{6} \right )}&=&\frac{3\sqrt{3}}{2}+\textit{\textbf{i}}\cdot\frac{3}{2}\\ 3\cdot e^{\textit{\textbf{i}}\cdot\left ( \frac{\pi}{6}+\frac{\pi}{3} \right )}&=&\textit{\textbf{i}}\cdot\cdot 3 \\ 3\cdot e^{\textit{\textbf{i}}\cdot\left ( \frac{\pi}{6}+\frac{2\pi}{3} \right )}&=&-\frac{3\sqrt{3}}{2}+\textit{\textbf{i}}\cdot\frac{3}{2} \\ 3\cdot e^{\textit{\textbf{i}}\cdot\left ( \frac{\pi}{6}+\frac{3\pi}{3} \right )}&=&-\frac{3\sqrt{3}}{2}-\textit{\textbf{i}}\cdot\frac{3}{2} \\ 3\cdot e^{\textit{\textbf{i}}\cdot\left ( \frac{\pi}{6}+\frac{4\pi}{3} \right )}&=&\textit{\textbf{i}}\cdot\left ( -3 \right ) \\ 3\cdot e^{\textit{\textbf{i}}\cdot\left ( \frac{\pi}{6}+\frac{5\pi}{3} \right )}&=&\frac{3\sqrt{3}}{2}-\textit{\textbf{i}}\cdot\left (\frac{3}{2} \right ) \end{array}\right. \end{array}


Brugbart svar (0)

Svar #4
20. september kl. 22:46 af janhaa

#3

\small \begin{array}{llllll} \textup{hvoraf:}\\& z=&\left\{\begin{array}{lll} 3\cdot e^{\textit{\textbf{i}}\cdot\left ( \frac{\pi}{6} \right )}&=&\frac{3\sqrt{3}}{2}+\textit{\textbf{i}}\cdot\frac{3}{2}\\ 3\cdot e^{\textit{\textbf{i}}\cdot\left ( \frac{\pi}{6}+\frac{\pi}{3} \right )}&=&\textit{\textbf{i}}\cdot\cdot 3 \\ 3\cdot e^{\textit{\textbf{i}}\cdot\left ( \frac{\pi}{6}+\frac{2\pi}{3} \right )}&=&-\frac{3\sqrt{3}}{2}+\textit{\textbf{i}}\cdot\frac{3}{2} \\ 3\cdot e^{\textit{\textbf{i}}\cdot\left ( \frac{\pi}{6}+\frac{3\pi}{3} \right )}&=&-\frac{3\sqrt{3}}{2}-\textit{\textbf{i}}\cdot\frac{3}{2} \\ 3\cdot e^{\textit{\textbf{i}}\cdot\left ( \frac{\pi}{6}+\frac{4\pi}{3} \right )}&=&\textit{\textbf{i}}\cdot\left ( -3 \right ) \\ 3\cdot e^{\textit{\textbf{i}}\cdot\left ( \frac{\pi}{6}+\frac{5\pi}{3} \right )}&=&\frac{3\sqrt{3}}{2}-\textit{\textbf{i}}\cdot\left (\frac{3}{2} \right ) \end{array}\right. \end{array}

hvilken layout er dette?

Latex?


Svar #5
21. september kl. 10:30 af STX100

#2

\small \begin{array}{lllllll}&& z^6=&-729 =729\cdot e^{\textit{\textbf{i}}\cdot \left (\pi+p\cdot 2\pi \right )}\qquad p\in\left \{ 0,1,2,3,4,5 \right \}\\\\&&z=& 729^{\frac{1}{6}}\cdot e^{\textit{\textbf{i}}\cdot \left (\pi+p\cdot 2\pi \right )^{\frac{1}{6}}}\\\\&& z=&3\cdot e^{{\textit{\textbf{i}}\cdot \left (\frac{\pi}{6}+p\cdot \frac{\pi}{3} \right )}}\qquad p\in\left \{ 0,1,2,3,4,5 \right \}\\\\\\&& \end{array}

Forstår ikke helt hvad der sker i sidste led i den øverste linje. Hvorfor kan man gøre det? 

ellers mange tak for hjælpen:) 


Skriv et svar til: Binom ligning z^6=-729

Du skal være logget ind, for at skrive et svar til dette spørgsmål. Klik her for at logge ind.
Har du ikke en bruger på Studieportalen.dk? Klik her for at oprette en bruger.