Matematik

Monotoniforhold: Anvendelse..

22. oktober kl. 15:43 af aliciaemilien - Niveau: B-niveau

Hej :-)

Der er dette eksempel i min bog: 

Eks) Optimeringsopgave

Blikplade 40 cm x 50 cm

skal man fremstille en æske uden låg ved at skære kvadratiske hjørnestykker bort og dernæst folde siderne op. Ønsket er at fremstille en æske med så stort rumfang som muligt.

Vi bortskærer kvadrater med sidelængde x cm. Den æske der opstår ved at bukke siderne op får længden 40 - 2x cm og bredden 50 - 2x cm. Æskens rumfang V bliver derfor

V(x)=x(40-2x)(50-2x)

Vi skal bestemme maksimumsværdien for V(x) i intervallet [0;20]. Da blikpladens korte side er 40 cm. lang kan x ikke overstige 20 cm.

På cas tegnes grafen for funktionen og maksimumsstedet og maksimumsværdien aflæses til henholdvis x=7,362 og V(7,362)=6564,23

Æskens højde, bredde og længde bliver henholdvis

x=7,362 cm, 40-2x=25,276 cm og 50-2x=35,276 cm

Dens rumfang er 6564cm^3 =6,564 liter.

Mit spørgsmål lyder på hvad funktionen er? altså den de tegner grafen og aflæser udfra. 
Andet spørgsmål lyder på hvad intervallet har at sige? hvor skal de 20cm bruges?

Udover dette er der en opgave jeg skal løse som lyder..

1) Om funktionen g(x) = 2x^3 + ax^2−4x−2, hvor a er en konstant, er det givet, at den har lokalt minimum for x = 2.

Bestem a.

//Jeg har en ide om at jeg ska indsætte 2 på x's plads, og isolere a, er det korrekt? i så fald, er der mon en der kan vise mig hvordan udregningen ser ud?

Tak på forhånd. :-))


Brugbart svar (0)

Svar #1
22. oktober kl. 16:05 af peter lind

i V(x) skal du også undersøge om V(20) er et maksimum

Find g'(x) og løs ligningen g'(2)=0


Brugbart svar (1)

Svar #2
22. oktober kl. 18:47 af StoreNord

#0    Funktionen, grafen tegnes udfra er:               V(x)=x(40-2x)(50-2x)
            her kan man aflæse, at     V(7,362)=6564,23
         Hvis op-bukket er er ≥ 20, blir der ikke noget rumfang.

Opgave 1:
Skærmbillede fra 2017-10-22 18-45-54.png


Svar #3
28. oktober kl. 22:58 af aliciaemilien

#2

Hvor kommer 5 fra i opg 1? :-)


Brugbart svar (0)

Svar #4
28. oktober kl. 23:06 af StoreNord

Har jeg et 5-tal for meget?     Hvor?


Svar #5
29. oktober kl. 11:59 af aliciaemilien

Ja, eller ikke for meget nødvendigvis, jeg ved bare ikke hvor du har det fra..

Du har skrevet: g(x)=2x^3-5x^2-4x-2

Men i opgaven lyder den g(x) = 2x^3 + ax^2−4x−2


Brugbart svar (0)

Svar #6
29. oktober kl. 12:12 af StoreNord

Hvis g(x) skal have lokalt minimum i x=2, må a være 5.


Brugbart svar (0)

Svar #7
29. oktober kl. 12:13 af StoreNord

Skærmbillede fra 2017-10-29 12-11-41.png


Svar #8
29. oktober kl. 19:12 af aliciaemilien

det forstår jeg ikke helt, hvorfor/hvordan ved du det?


Brugbart svar (0)

Svar #9
29. oktober kl. 19:23 af StoreNord

Prøv at differentiere f(x) for at finde dens lokale minimum. Du får en 2. gradsligning med et a. Løs denne med hensyn til x. Du får et udtryk med et a. Værdien af dette udtryk er 2. Opstil denne ligning (med et a).
Løs så ligningen ved at kvadrere begge sider.


Svar #10
29. oktober kl. 19:54 af aliciaemilien

Det vil jeg lige prøve. Tak :)!

Jeg kan fornemme du er ret god til Geogebra.. jeg sidder lige nu med en opgave hvor jeg skal bruge noget der hedder minimumsfaciliteten i CAS, men jeg kan ikke finde den. 

I CAS skal jeg tegne grafen for f(x)=2πx^2+800/x 

"Ved hjælp af minimums faciliteten finder du ud af at minimum for x=... dette er den radius man bør vælge på dåsen."

Er det noget du kan hjælpe med? ^^'


Brugbart svar (1)

Svar #11
29. oktober kl. 20:01 af StoreNord

Rettelse til #9
Prøv at differentiere f(x) for at finde dens lokale minimum. Du får en 2. gradsligning med et a. Løs denne med hensyn til x. Du får et udtryk med et a. Værdien af dette udtryk er 2. Opstil denne ligning (med et a).
Løs så ligningen ved at kvadrere begge sider.
Løs så ligningen ved at gange begge sider med 12
isolere kvadratroden
kvadrere begge sider og
løse endnu en 2. gradsligning.              :)

Geogebra er meget nemmere!


Svar #12
29. oktober kl. 20:09 af aliciaemilien

Modtaget :-)

Jeg synes ikke noget af det her er nemt D: 

Jeg troede faktisk, at det var CAS i geogebra jeg skulle bruge? 


Brugbart svar (0)

Svar #13
29. oktober kl. 20:13 af StoreNord

Nej ikke CAS


Brugbart svar (0)

Svar #14
29. oktober kl. 20:17 af StoreNord

Nej, du behøver ikke at bruge CAS.Minimum i Geogebra.png

Vedhæftet fil:Minimum i Geogebra.png

Svar #15
29. oktober kl. 21:30 af aliciaemilien

Men det giver mig jo 2 punkter, efter hvad jeg ved skal jeg bruge et tal? :)

Jeg har brugt eksemplet på billedet, at gå ud fra. Opgaven jeg skal løse lyder

"Hvilken højde og hvilken radius (2 dec.), skal en cylinderformet blikdåse have, når den skal indeholde 400 ml og have mindst mulig overflade? Dåsen skal have både bund og låg."

Jeg er kommet frem til følgende

Bunden og låget har hvert et areal         πr^2
Dåsens omkreds er                                 2πr
Dens krumme overflade                         2πrh

Det samlede overfladeareal er derfor    a = 2πr^2+2πrh

Forudsætningen er, at rumfanget er 400 cm^3
Derfor gælder det, at      πr^2h=400

Jeg isolere nu h                  h=400/πr^2
og indsætter dette i formlen for A, dette bliver nu en funktion af r

A(r)=2πr^2+2πr*400/πr^2=2πr^2+800/r

Ser jeg på eksemplet skal jeg nu tegne grafen i cas, bruge minimumsfaciliteten og komme frem til et tal, som så er den radius jeg bør bruge. 

Er jeg helt gal på den? 

Vedhæftet fil:eksempel.jpg

Brugbart svar (0)

Svar #16
29. oktober kl. 21:39 af StoreNord

At jeg fik både punkt A og punkt B, skyldes at jeg rystede på hånden. Du skal bare skrive:
Ekstremum[f,0,10]            eller her blot Ekstremum[f]
Ofte er der flere ekstremer, men ikke her.

I Geogebra er CAS en anden tilstand, som du kan komme i ved at klikke på vis og vælge CAS.
Prøv også Vis->3D grafik.


Svar #17
29. oktober kl. 21:58 af aliciaemilien

#11

Rettelse til #9
Prøv at differentiere f(x) for at finde dens lokale minimum. Du får en 2. gradsligning med et a. Løs denne med hensyn til x. Du får et udtryk med et a. Værdien af dette udtryk er 2. Opstil denne ligning (med et a).
Løs så ligningen ved at kvadrere begge sider.
Løs så ligningen ved at gange begge sider med 12
isolere kvadratroden
kvadrere begge sider og
løse endnu en 2. gradsligning.              :)

Geogebra er meget nemmere!

g(x) = 2x3 + ax2−4x−2

n*x^n-1

3*2x^3-1

6x^3-1

6x^2

n*x^n-1

2*ax^2-1

2ax

-4

-2 = en konstant = 0

g’(x)=6x^2 +2ax-4

g’(2)=6*2^2 +2a*2-4  =  12^2 +4a-4

Er dette korrekt? jeg er lidt i tvivl om hvordan jeg kommer videre herfra. :d 


Svar #18
29. oktober kl. 22:09 af aliciaemilien

#16

Når jeg skriver ekstremum[f] i input får jeg det her 

Vedhæftet fil:ekstremum[f].jpg

Svar #19
29. oktober kl. 22:14 af aliciaemilien

Måske fordi at jeg skulle tage at skrive ekstremum[a] i stedet.. nevermind :-D

Men det ændre jo ikke på, at der stadig er to tal (3.99,300.53), og jeg kun skal bruge et?


Brugbart svar (0)

Svar #20
29. oktober kl. 22:19 af StoreNord

g'(x) = 6x2 + 2ax−4                  korrekt    
Minimum kræver:                       6x2 + 2ax−4 = 0
Diskriminant:                             D = 2²a²-4·6·(-4) = 4a²+96
Hvad er så x, udtrykt ved a?


Forrige 1 2 Næste

Der er 25 svar til dette spørgsmål. Der vises 20 svar per side. Spørgsmålet kan besvares på den sidste side. Klik her for at gå til den sidste side.